Impact of Device Parameter Variation on RF Performance of Gate Electrode Workfunction Engineered (GEWE)- Silicon Nanowire (SiNW) MOSFET
نویسندگان
چکیده
In this paper, we explore the quantitative investigation of the high-frequency performance of Gate Electrode Workfunction Engineered (GEWE) Silicon Nanowire (SiNW) MOSFET and compared with Silicon Nanowire MOSFET(SiNW MOSFET) using device simulators: ATLAS and DEVEDIT 3D. Simulation results demonstrate the improved RF performance exhibited by GEWE-SiNW MOSFET over SiNW MOSFET in terms of transconductance (gm), cut-off frequency (fT), maximum oscillator frequency (fMAX), power gains (Gma, GMT) parasitic capacitances, stern’s stability factor and intrinsic delay. Further, using three-dimensional (3-D) device simulations, we have also examined the efficacy of parameter variations in terms of oxide thickness, radius of silicon nanowire, channel length and gate metal workfunction engineering on RF/microwave figure of merits of GEWE-SiNW MOSFET. Simulation result reveals significant enhancement in fT and fMAX; and a reduction in switching time in GEWE-SiNW MOSFET due to alleviated short channel effects (SCEs), improved drain current and smaller parasitic capacitance, thus providing detailed knowledge about the device’s RF performance at such aggressively scaled dimensions. Keywords— Power Gains, GEWE, RF, Silicon Nanowire MOSFET, Parasitic capacitance, fT and fMAX
منابع مشابه
Improvement of a Nano-scale Silicon on Insulator Field Effect Transistor Performance using Electrode, Doping and Buried Oxide Engineering
In this work, a novel Silicon on Insulator (SOI) MOSFET is proposed and investigated. The drain and source electrode structures are optimized to enhance ON-current while global device temperature and hot carrier injection are decreased. In addition, to create an effective heat passage from channel to outside of the device, a silicon region has embedded in the buried oxide. In order to reduce th...
متن کاملPerformance Study and Analysis of Heterojunction Gate All Around Nanowire Tunneling Field Effect Transistor
In this paper, we have presented a heterojunction gate all around nanowiretunneling field effect transistor (GAA NW TFET) and have explained its characteristicsin details. The proposed device has been structured using Germanium for source regionand Silicon for channel and drain regions. Kane's band-to-band tunneling model hasbeen used to account for the amount of band-to...
متن کاملImpact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study
A comprehensive study of Schottky barrier MOSFET (SBMOSFET) scaling issue is performed to determine the role of wafer orientation and structural parameters on the performance of this device within Non-equilibrium Green's Function formalism. Quantum confinement increases the effective Schottky barrier height (SBH). (100) orientation provides lower effective Schottky barrier height in compa...
متن کاملStudy the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy
Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...
متن کاملSilicon Nanowire for Thermoelectric Applications: Effects of Contact Resistance
Silicon nanowire (SiNW) based thermoelectric device (TED) has potential applications in areas such as chip level cooling/ energy harvesting. It is a great challenge however, to assemble an efficient device with these SiNW. The presence of parasitic in the form of interfacial electrical resistance will have a significant impact on the performance of the TED. In this work, we explore the effect o...
متن کامل